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Abstract. The algorithm proposed here for automatic
level detection in noisy time series of patch-clamp
current is based on the detection of jump-free sections
in the time series. The detector moves along the time
series and uses a y° test for the detection of jumps.
When a jump is detected, the mean value, the vari-
ance and the length of the preceding jump-free sec-
tion are stored. A Student’s z-test was employed for
the assignment of detected jump-free sections to dis-
crete levels of the Markov model and for rejection of
all sections with multiple assignments.

The choice of the two significance levels is based
on a 3-D diagram displaying the average number of
detected levels from several time series vs. the signifi-
cance levels of jump detection and of level assignment.
The correct one is selected out of several plateaus with
integer number of levels by means of the criterion of
minimum scatter or other plausibility considerations.

The test has been applied to simulated data obtained
from a 2-state model and a 5-state aggregated Markov
model, and the influences of SNR and of gating fre-
quency are shown. Finally, the performance of the
level detector is compared with a fit-by-eye and with a
fit of the amplitude histogram by a sum of gaussians.
At high noise, the fit of amplitude histograms failed,
whereas the other two approaches were about equal.

Key words: (Aggregated) Markov model — Anti-
aliasing filter — Channels — Level detection —
Patch clamp — Time series

Introduction

The kinetic behavior of ion channels is described by
Markov processes (Korn & Horn, 1988; Yeo et al.,
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1988, Ball & Rice, 1992). There exist three main ap-
proaches for evaluating the model associated with a
time series of measurements of patch-clamp current:
one- or two-dimensional dwell-time analysis (Ma-
gleby & Weiss, 1990; Magleby & Song, 1992; Col-
quhoun, Hawkes & Srodzinski, 1996; Blunck et al.,
1998), direct fit of the time series (Fredkin & Rice,
1992; Albertsen & Hansen, 1994; Klein, Timmer &
Honerkamp, 1997; Farokhi, Keunecke & Hansen,
2000) or analysis of beta distributions (FitzHugh,
1983; Yellen, 1984; Klieber & Gradmann, 1993;
Riessner, 1998).

The first two methods require the a priori
knowledge of the symbols of the Markov process, i.e.,
the original current levels related to distinct conduc-
tivity states of the investigated channel(s). In the case
of dwell-time analysis, the current levels have to be
known in order to set the threshold values of the
jump detectors (Schultze & Draber, 1993; Draber &
Schultze, 1994; Hansen et al., 1995). For the direct fit
of the time series, a predicted current level is com-
pared with the measured one. Thus, the original levels
of the channel(s) have to be known before the anal-
ysis starts. However, in real records, the time series
are heavily corrupted by noise, and it is very difficult
to find the original current levels. Often, an amplitude
histogram is created from the measured record and
the original levels are determined as the centers of the
gaussian distributions used to fit the measured am-
plitude histogram. This works fine as long as the
“valleys” between individual distributions are not
filled up by noise.

Here, a novel level detector is described con-
sisting of two test procedures. The first one, based on
a y? criterion, seeks to find jump-free time sections in
a noisy time series, even if the signal-to-noise ratio
(SNR) is poor (down to 0.25). For other approaches
that deal with the problem of detecting a change in
parameters (i.e., a jump of the current level), see,
e.g., the literature on AMOC renewal processes
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Fig. 1. Three models used for testing the level detector. (4) Two-
state Markov model, (B) Three-state Markov model, and (C) Five-
state aggregated Markov model. The factor k, the scaling factor for
the rate constants, is used on the abscissa in Figs. 7, 8, 9 and 10,
below.

(Horvath & Steinebach, 2000; Huskova & Steine-
bach, 2000) or on maximum likelihood ratio tests
(Horvath, 1993). The second test assigns the jump-
free sections to putative current levels of the ion
channel.

Methods

Markov models of ion channels were used for the generation of
time series to test the algorithms. A Markov model is the gener-
ally accepted presentation of the gating behavior of a channel
(Konn & Horn, 1988). It consists of different states, mostly called
O (open), S (sublevel), and C (closed). The actual state of the
channel is assigned to one state of this Markov model. Transitions
from one state to the other occur spontaneously with rate con-
stants kjj (or transition probabilities p;;) as depicted in Fig. 1. If
the conductance levels (symbols Sj) are not different for all states,
the model is called an aggregated Markov model (Ball et al.,
1993).

For the illustration of the operation and the problems of the
level detector three models are used: a simple 2-state Markov
model (Fig. 14, C-0O), a 3-state Markov sublevel model (Fig. 1B,
0-C-S), and a 5-state aggregated Markov model (Fig. 1C, O-O-C-
C-C, Farokhi et al., 2000). The C-O model is often used when a
new algorithm for data analysis is presented (FitzHugh, 1983;
Crouzy & Sigworth, 1990).

Simulations of time series related to a given (aggregated)
Markov model were done by the following routine. It started with
the selection of a state of the Markov model. In order to get a
stationary Markov time series, the range between 0 and 1 was
divided into sections proportional to the steady-state concentra-
tions of the Markov states. Then, a uniformly distributed random
number between 0 and 1 was generated, and that state was selected
in whose section the random number fell. This state was the source
state R, for the first jump. For this jump, the random generator
delivered two other uniformly distributed numbers. The first one
(n;) was used to calculate the time of the next jump from the source
state R, to the sink (destination) state Rg (continuous time). The
dwell-time distribution of the source state R, is

Re(k) = 1-exp(—kAr) with = Ky =/Jr = ki (1)
ST

s labels all possible sink states for a jump out of the present state
R,. The first random number n; was used as an entry of the ordi-
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nate of Eq. 1 (i.e., as a value of R,), and the related value kAt at the
abscissa was taken as the time of the jump (Press et al., 1987). The
amplitude factor “1” in Eq. 1 was used because the random
number 7, is uniformly distributed between 0 and 1:

kAt = —

Zlkrs In(m) @)

ST

Now, the second random number 7, (uniformly distributed, 0 < n,
< 1) gave the aim (sink state Rg) of the jump. The section between 0
and 1 was divided into sections of length k//, assigned to the
states Rg as described above for the starting state. The state Rg, in
whose section 1, happened to fall, was called the sink (destination)
state. The system still remained in state R, for the time 7, = kAt
(Eq. 1). Then, the jump to Rs occurred, and after this jump, the
algorithm started again from this new state by generating two new
random numbers.

The effect of the anti-aliasing filter was introduced as follows:
The jump caused a response of the 4-pole Bessel anti-aliasing filter,
which was taken out of a memory. In this memory, the theoretically
determined jump responses of the different anti-aliasing filters were
stored. Thus, the series of jumps /(z) created by the random gen-
erators resulted in a sum of delayed filter responses, i.e., the mea-
sured current

- i[wk h(t— 1) (3a)

k=j,

with

k
tk:ZAti and h(t)=0 for 1<0

i=1

(3b,c)

with I, being the step in current related to the jump from state R,
to Rg at time #;. f, was given in continuous time (Eq. 2), and mostly
did not coincide with the sampling points. Then, h(t—t,) was ob-
tained from interpolation of the stored values of the stored step
responses of the anti-aliasing filter /(7). The lower limit j; of the
sum in Eq. 3 was determined by the fact that those responses could
be omitted if the related 1-/A(¢) had decreased below one bit of the
DA converter.

This procedure resulted in a much shorter computing time for
the calculation of a time series of 2,000,000 samples than an al-
gorithm making a decision at every sampling point if and where to
jump. In addition, this program generated a continuous Markov
process, as natural channels do. It automatically included multiple
jumps in a sampling period Ts.

Then, the generated time series was superimposed by noise.
White gaussian noise was generated by a Box-Muller algorithm
(Press et al., 1987). Filtering to obtain white, red or blue noise
could be done by digital filtering. In the simulations, red noise
(prefiltered by the same filter A(7) as used in Eq. 3 was used. As
always the same time course of the noise was used in the simula-
tions, (variations occurred only in the time series of the “‘channel”),
the whole time series of noise was stored in the computer. For
composing a surrogate noisy patch-clamp record, the freshly pre-
pared time series of the Markov process was added to the stored
noise series with the same anti-aliasing filter. The signal-to-noise
ratio was defined by

SNR = <£>2 @)

Cb

with A7 being the average difference in the currents of the related
levels and oy, the standard deviation of the background noise. The
assumed sampling rate was 200 kHz, and the anti-aliasing filter was
a 4-pole Bessel filter with a corner frequency of 50 kHz.
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ABBREVIATIONS
A(D), amplitude histogram of measured current;
Fs, significance level for splitting of the time series into

jump-free intervals;

Fi(1), distribution function of the Student’s #-test;

1, current;

I, mean current;

I, sampled value of the current at time k;

Ty, sampled value of background noise at time k;

Is, jump in current as caused by a transition between
states;

L, significance level for the Student’s r-test for the
probability that two samples have the same mean,;

kij, rate constants of transition between the states of a
Markov model;

m, number of levels;

mg, number of detected levels;

m, number of levels of Markov model;

e, number of excluded data points;

Ty, reduced length of detected jump-free section;

o, mean of reduced length of apparent jump-free sec-
tions;

R, source state of Markov model;

Rs, sink (destination) state of the Markov model;

Si, mean value of detected markov level i;

Sii, mean value of the j'™ jump-free section assigned to
Markov level S;

S, real Markov level,;

SNR, signal-to-noise ratio;

4 time of a jump;

Ts, sampling period;

tt, threshold of the Student’s t-test;

At, time between jumps;

Arels relative error of the determination of the values of the
level in %;

a%, standard deviation of the background noise;

Tons standard deviation of the background noise from a

filtered time series of length #;
standard deviation of subsections of the time series of

length n;

“é,’ scatter of the level S;;

Oo» Scatter of the scatter of the assumed levels;

x,z,_l, )52 distribution for jump detection in subsections of
length n

Theory of the New Level Detector
The new algorithm comprises several steps:

e climination of linear drift and hum due to the AC
power source (optional, if necessary)

e determination of the standard deviation of the
background noise G}, from a jump-free time series
of the same or an equivalent patch. However, after
developing the algorithm, a procedure (Fig. 5 be-
low) is provided that does not need the a priori
knowledge of oy,

e use of this knowledge for dividing the time series
into jump-free subsections

e cstimation of the symbols of the Markov model
(e.g., current levels) from these subsections
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e repetition of the analysis with different significance
levels
e selection of the most probable solution (Fig. 5)

The first step making use of common drift elim-
ination procedures (Bendat & Piersol, 1971; Press et
al., 1987) is not considered here. A serious problem is
the determination of the standard deviation oy, of the
jump-free time series. One method is to block the
channel(s) by an inhibitor to get o}, from the resulting
time series. Here, we start from the assumption that
oy, is known. Later on (Fig. 5), it is shown that the a
priori knowledge of oy is of minor importance.

DEeTECTION OF JUMP-FREE SECTIONS

Cutting the time series into subsections without
jumps is based on the expectation that a subsection of
the time series that contains a jump has a higher
standard deviation o than a subsection without a
jump. This leads to the following procedure: If o
exceeds an adequate threshold, it is assumed that a
jump has occurred. Because of the statistical nature
of the noise, it may happen that jumps remain un-
detected for some values of the threshold. However,
before dealing with this problem, the procedure for
jump detection is described.

The threshold for the standard deviation, oy,
depends on the length n of the subsection and on the
standard deviation of the background noise o},. For
the numerical decision of whether a time series with n
data points /;, contains a jump, X2_, is calculated

n
X =, =D = (-1 (5)

i=1

I in Eq. 5, is the mean value of the current of the
inspected section. In a real patch-clamp setup, the
anti-aliasing filter causes an internal correlation of
the noise. The resulting deviation from normal dis-
tributed data implies that the significance levels be-
come different from Fg in Eq. 7. Especially, the
variance of the noise Gy, is not independent of the
length n of the section. As an attempt to account for
this problem, o, was determined from a jump-free
section of the time series of length n and was stored
on the computer for the evaluation by means of Egs.
6 and 7.

The distribution function of the y2 , value of n
normal-distributed variables /; of the noise in a jump-
free section with standard deviation oy, is (Kreyszig,
1982)

1 u n X2
Fl(X2,1) = — / un—2exp(— —)du = p<_’Ll>
" 20T (4 2 2’ o2
(2) 0 bn

(6a)
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length n

Fig. 2. Confidence interval [0, x2_, ] (range of legitimate y2_,-
values and of relative scatter, cg,/0p, (Eq. 5) of the signal in the
section of n at given Fg; index u gives upper limit) calculated from
Egs. 6 and 7 are shown for three different significance levels (Fs =
0.99, 0.5, 0.2, as indicated in the figure) for interval lengths (2 < n <
16).

with P being the incomplete gamma function

Pla, x) = \/LE/G_’t”_ldt (6b)
0

Because of Eq. 5, this distribution function for jump-
free sections does not depend on the mean 7 (i.e., on
the actual symbol of the Markov model) of the ran-
dom variables 7;. A significance level Fg is chosen, and
the upper limit of the X?_,-value or the related oy,
(Fig. 2) is calculated as follows

2

R= () =R )

Sn

For the calculation of X2 | (or oy, Eq. 5) from Egs.
6a and 7, the numerical implementation of the in-
complete gamma function P (Eq. 6b) as given by
Press et al. (1987) is used.

Figure 2 shows the dependence of the confidence
interval on the length n of the subsection of the time
series for different significance levels Fs. For instance
Fs = 0.9 means that 10% of the detected jumps were
false alarms. The shorter the subsection, the greater is
the range of tolerable o2 -values for reasonable con-
fidence levels. Because of this statistical uncertainty in
short sections, small jumps may be hidden in the
variance of the o2 -value. The tolerance interval gets
narrower in long subsections. Thus, even small jumps
that cause just a small increase of the o,,-value can be
detected in a long subsection.

Analysis of measured time series is based on the
inspection of sections of the time series /; of different
length n. n is an integer power of 2 in order to increase
calculation speed. The time series of Fig. 3B (gener-
ated by the Markov model in Fig. 34 and shown for
SNR = 4)is used to demonstrate the operation of the
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jump detector. The test section of length n moves
along the time series. At each point 7 of the time
series, the Xﬁ_] value of the section from #,_,,, ; to 18
calculated (Eq. 5) and plotted versus time. The run
starts with n = 2 (Fig. 3C, E, G). Then, the procedure
is repeated with n = 4, 8, and 16. The results obtained
for n = 16 are shown in Fig. 3D, F, and H.

Figure 3 shows the influence of the length » of the
inspected interval, the length of the event, the sig-
nificance level Fg (Eq. 7) and signal-to-noise ratio
(SNR, Eq. 4). The example for nearly noise-free re-
cords (SNR = 400) shows the benefit of short sec-
tions, namely high temporal resolution. With n = 2,
all jumps are clearly indicated (Fig. 3C), whereas n =
16 is too long (as in Fig. 3F and H), and fails to detect
the jump-free section between the jumps of the short
event. This is not a serious problem, as discarding a
section is always on the safe side.

The comparison of Fig. 3G and Fig. 3H demon-
strates the influence of the length of the inspected in-
terval at very high noise (SNR = 1). In Fig. 3G (n =
2), the high oy, causes such a broad confidence in-
terval (Eq. 7, Fig. 2) that the significance level Fg =
0.95 is reached only once. According to Eq. 8 below, n
= 16 yields a better chance to reach Fg = 0.95 in the
case of the long event. For F5 =0.9, not all peaks at n
= 2in Fig. 3G (and also in Fig. 3F) can be assigned to
true jumps, as their occurrence is not related to the
position of the jumps. Thus, there exists no adequate
significance level for n = 2. In the case of n = 16, a
significance level of 0.95 leads to the detection of the
jumps of the long event, whereas in the case of the
short event (4 data points) the long section (19 data
points) averages over open and closed events, and
thus decreases X°. At SNR = 4, n = 2 fails again.
With n = 16, the long event is detected with high
reliability. The section with the short event is excluded
at Fg = 0.7. Discarding parts of the time series (as in
the case of the short event with adequate significance
levels in Fig. 3D, F, H) may not be a major problem,
as the statistics of dwell times (Eq. 1) imply that a
longer event with the same current level will occur
somewhere else in the time series if it is long enough. A
serious problem is the inclusion of an undetected jump
in an apparently jump-free section, as happens in Fig.
3F and G. An important message of Fig. 3 is also that
the choice of the adequate significance level is crucial
for the correct operation. A way to approach this
problem is presented below (Fig. 5).

The jump in the middle of the section and the
increase of chance of its detection with the length n of
the section is obtained from the following consider-
ations. If the jump of magnitude I5 is from low to
high current and occurs after m data points in an
interval of length n (and does not jump back before
n), then the mean value I of the whole section is
(n—-m)/n Is above the lower current level, and the
expected X2, (related to o, by Eq. 5) is
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= |l

(8a)

with Ix being the real (noise-free) mean value and 1,
the mean value of the noise in the investigated sec-
tion. Introducing Eq. 5 for the noise signal Iy, and
calculating the sum of () terms leads to

2 2
mn- —mn
E[X, || = E[X, ] +T1§

n
E| Isi(To — I)
k=1

The expected value of the last term in Eq. 8b is zero
(as noise and jump are not correlated). The symbol
Isx accounts for factors before /s in the sums of Eq.
8a.

Equation 8c has two messages: 1. The derivation
d/dm of Eq. 8c shows that the deterministic term gets
a maximum value (nf3)/4 for m = n/2, ie., if the
jump occurs in the middle of the interval. 2. The I3
term and the expected value of X? increase hnearly
over n if m is a fixed ratio of n, especially when m =
n/2. In contrast, the slope of increase of the threshold
of X2_, in Fig. 2 for a given Fs is much less (in Fig. 2,
X2 _, for Fs = 0.99 increases by a factor of 3, whereas
n increases by a factor of 8). Thus, the chance of
detecting a jump increases with the length of the in-
spected section.
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The increased chance of jump detection with in-
creasing n becomes obvious from a comparison of
Fig. 3G and Fig. 3H (SNR = 1) or Fig. 3E and Fig.
3F (SNR = 4), as described above.

Construction of the jump-free section with length
n, starts from the detection of the last two subsequent
jump positions, as the section between them is sup-
posed to be jump-free. It has to be mentioned that n
(used in Fig. 3 for the length of the test section for the
jump detection algorithm) is different from the length
n, of what is stored as jump-free section in the com-
puter. As it is better to exclude more data points than
necessary rather than including an undetected jump,
the section is shortened by #/5 on either side. Usually,
an anti-aliasing filter smoothes the transitions. In
order to account for this effect, additional n, data-
points (corresponding to the a priori known time
needed by the filter to reach steady state) are omitted
from the first part of the final section. The mean value
of the remaining subsection, its ;(2, and the reduced
section length n, are stored in an array for later use.

RECONSTRUCTING LEVELS FROM THE STORED
JumP-FREE SECTIONS

The determination of the symbols of the Markov
process (original current levels of the ion channel)
was done by two different approaches:

1. Using a Student’s z-test for extracting the symbols
from the mean values of the jump-free sections.
Even though the application of the #-test requires
independent and identically distributed data, the
influence of the anti-aliasing filter is ignored, be-
cause of the robustness of the test and because the
final significance level is determined by the ap-
proach related to Fig. 5 below. This method is the
most stupid one, but it turned out to be the most
effective one.

2. Generating a 3-dimensional histogram with mean
value and special length on the x- and y-axis, re-
spectively, and the frequency f of occurrence on
the z-axis. The 3-dimensional histogram is fitted
with a sum of theoretical distributions of a single
level by means of a least-squares fit or a maxi-
mum-likelihood fit. Even though this approach
seemed to be more sophisticated, it failed, and is
not reported here.

The grouping of jump-free sections of the time
series with the same mean began from the levels
stored in the array obtained from the detection of
jump-free subsections.

The mean value of the longest section is taken as
the first level without test. Because of its length, its
statistical error is expected to be small. Then, the next
section (the second longest one) is taken and the
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Student’s t-test (Press et al., 1987) is employed to test
whether its mean value is equal to that one of the first
section. The distribution function is

N 1
=153 ©)

with N = N; + N, — 2, N; = n, of the new section,
N, = n, of the already assigned section (average of
the sections already assigned to S;), B = incomplete
beta function (Press et al., 1987), and

(1S
Spi
with §; = symbol (mean value) of level i. With S

being the mean values of the sections assigned to S,
Spi becomes

S — ZJN:]l(IJ -1+ ZJN:z1 (Sij— )’ LJFL
b= N +Np, -2 Ny N,
(11a)

(10)

or

Spi

N 7 2 N N 2
P ]j2 - NL%(Zi:ll L) +>02 Sij — NL; (>3 Siy)

Ni+ Ny, -2
1 n 1
N N

The second form (Eq. 11b) is used for the nu-
merical implementation, because it enables a recur-
sive calculation by summarizing the first and second
moments of all sections assigned to a symbol S; in
order to compute Sp;. Again a threshold value of
t(tt) for rejection has to be selected for

=(373) 2

(11b)

L[ZI—F[([T):BN

For instance, F; = 0.9 means that L, = 10% of
the levels with apparently different mean still have the
same mean. The value of 7 in Eq. 10 has to be zero for
absolutely identical means of the two data sets. With
a given threshold 1, three cases may occur:

1. The section cannot be assigned to any of the al-
ready detected symbols. A new level has to be
introduced.

2. It can be assigned to one and only one level. Then
it is merged into the pool of sections already as-
signed to this level.
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Fig. 4. Mean-variance histogram showing the standard deviation
Ogn vs. the mean value of apparent jump-free sections obtained
from simulated data generated from a 3-state model O-C-S (Fig. 1)
with all rate constants = 20 msec™! and currents O = 1090, S =
1063 and C = 1000, oy, of the jump-free time series was 33 (hori-
zontal dotted line). Only those sections were used whose length was
at least 2/3 of the maximum length.

3. It can be assigned to more than one level. It is
declined.

After all sections have been inspected, an en-
semble of symbols is generated, and the mean and the
variance of the symbol (conductance level) S; can be
calculated.

Problems of proper assignment can arise from the
fact that in the case of data with poor SNR it may
happen that there are apparent jump-free sections,
which contain an undetected jump as in Fig. 3E, G for
all confidence levels, in Fig. 3H for Fs = 0.9 and in Fig.
3F for Fs = 0.99 in the case of the short event. The
inclusion of such undetected jumps would generate
new, but false symbols, because their mean is some-
where between two real symbols, and thus cannot be
assigned to one of them. Approaches to overcome
these problems are mainly based on an adequate choice
of the significance levels Fg (Eq. 7) and L, (Eq. 12).

A problem that cannot be solved by the proce-
dures suggested here is the reduction of apparent
levels by the averaging function of the anti-aliasing
filter in the case of fast gating (Hansen, Keunecke &
Blunck, 1997; Townsend & Horn, 1999). In that case,
a direct fit of the time series based on an adequate
Hidden-Markov model is required (Farokhi et al.
2000; Zheng, Vankataramanan & Sigworth, 2001).

The scatter of 6, occurring in different sections of
a time series is illustrated by means of a mean-variance
histogram (Patlak, 1993) constructed from simulated
data obtained from a 3-state model O-C-S (Fig. 1) as
specified in the legend of Fig. 4. Figure 4 shows that
there exist sections with noise quite far below the av-
erage of o, of the noise-free time series. Those sections
with the lowest noise come close to the original mean
values (symbols of the Markov process).
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Fig. 5. Dependence of the average number of detected levels on
significance level Fg and threshold #r. Results from 10 time series
simulated on the basis of a symmetrical 2-state model (Fig. 1) with
koc = kco = 15 msec™!. The correct number of levels is 2. The low
values of L, result from the incomplete Beta function B (Eq. 12).

It may be argued that plots like Fig. 4 are suffi-
cient for level detection. However, its evaluation still
requires human interaction, whereas the level detec-
tor developed here is designed to do its job auto-
matically. Nevertheless, Fig. 4 shows that selecting
the section with minimum noise gives symbols (levels)
close to the real ones.

The influence of both significance levels Fs and L,
(related to the threshold ¢1) becomes apparent from
3-D plots like that shown in Fig. 5. Here, the average
number of detected levels m is plotted over the Fg-t1
plane. In the case of real patch-clamp data, the gen-
eration of such plots requires several experiments on
the same system. The number of experiments can be
increased by cutting long records into smaller ones.
However, care has to be taken that rare events are not
excluded from some of the short records. In Fig. 5,
ten time series were simulated with a two-state model
with 2 conductance levels (open—closed). Non-inte-
ger numbers of m result from averaging over the
results from different time series. They are an indi-
cation that the choice of Fg and Lg has not been
appropriate. A plateau is seen at zero levels (wrong)
and 2 levels (correct).

An additional criterion is required if the results
are not so convincing as in Fig. 5. Often, several
plateaus with an integer number of channels can be
observed, and the correct plateau may not be the
widest. In that situation, the inspection of the scatter
of the scatter, o,, of the levels S; turned out to be
powerful. For this purpose, the variance of each of
the detected levels was determined.

1 NAi

1 Z(Si — L)’

na; is the number of all data points of all sections
assigned to the level Sj, I; is the sampled current
value assigned to level Sj. Then, the scatter of the
scatter was calculated

(13a)
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Fig. 6. Using the scatter of the scatter of the levels o, (mg) for
determining the most probable number of levels mg. 64 (mg) (Eq.
13) is plotted vs. the number of detected levels (n1g). (4) One 2-state
channel with 2 levels. (B) Three 2-state channels resulting in 4 levels.

1 mg

og(mg) = m—Z(GSi ~65)’

Eo0

(13b)

os(mg) is expected to be minimum if the number mg
and values of levels are correct. Figure 6 gives two
examples. This, however, does not work in the case of
strong scatter, when the c-environments of the levels
overlap as shown below (Fig. 12).

TuaE OutPUT OF THE COMPUTER PROGRAM

For the computer program (www.zbm.uni.kiel.de/
software/leveldet.html), two time series are required.
The time series with jumps that has to be analyzed,
and a jump-free time series. (The last one is not
necessarily required, as Fg (Eq. 7) can be obtained
from diagrams like Fig. 5, but its knowledge provides
a hint to the adequate range). After starting the
computer, a list of possible results is delivered ac-
cording to Fig. 5. A result is a block of data assigned
to a number of levels that is related to a plateau in
Fig. 5. Each one of these blocks comprises:

o the number mg of levels assigned to this block

o the size of the area of the related plateau in Fig. 5

e the variance of the variance (c4(mg)) of related
levels according to Fig. 6

e the current values S; of the detected levels

e the noise aéi of each determined level

e the number of data points contributing to each
level

e the number of jump-free sections contributing to
each level

In the absence of fast gating, the computer au-
tomatically selects the best result from the list by
choosing the block with minimal variance of the de-
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tected levels or with minimum variance of the vari-
ance of the levels. In addition, the complete list of
results is shown, in order to leave the final decision to
the user. The necessity of this inspection is shown
below (evaluation related to Fig. 12).

Criteria for the necessity of a user decision are:
very few data points assigned to a level (unreliable
level), different scatters of the levels (may indicate
fast gating). In these cases, a general recipe cannot
be given. Instead, the experience of the user is
required.

Short sections may lead to improper assignment.
If the first section opening a new level has a strong
deviation from its true current, then the selection of
the subsequent section assigned to this level is biased.
We found that two strategies were successful:

1. Before the analysis is done, the sections are sorted,
and the analysis starts with the longest section.

2. A subsection that cannot be assigned to existing
levels may only open a new level if its noise is
lower than 90% of the noise of the jump-free time
series according to Fig. 4.

For a time series with 2 million data points, the
time for a run of the level detector on an Athlon 1.4
GHz is about 45 min.

TESTING THE LEVEL DETECTOR WITH SIMULATED
TiME SERIES WITH DIFFERENT GATING
FrREQUENCIES AND HigH AND Low SNR

Simulations of time series were done as described in
Methods. For the purpose here, a 2-state model may
be considered as sufficient, because only the dwell
times on a level are important for the detection of this
level, and it does not matter whether the system
jumps around between aggregated states of equal
conductance. Nevertheless, for the asymmetric case,
an aggregated Markov model is used, the 5-state
model used by Farokhi et al. (2000), to describe the
fast gating that causes the AMFE (anomalous mole
fraction effect) in Chara.

The quality of the results is presented by two
criteria. The first one is the finding of the number mg
of correct levels. The second one is the relative error
of the determination of the values of the levels

1 - |§1 - Si next|
Apl = — _ 14
rel me - AS ( )

with mg being the number of experimentally deter-
mined current levels in the assumed (aggregated)
Markov model, AS the average distance between the
Markov states, S;, the symbol (current value) deter-
mined by the level detector and S; jex(, the real Markov
state (known from the simulations) that is closest to ;.
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Fig. 7. Performance of the level detector for data simulated on the
basis of the 2-state model in Fig. 1. (4) SNR = 400; (B) SNR = 4;
(C) SNR = 0.25. ko is given at the bottom abscissa. A (in %) is
calculated by Eq. 14. The meaning of the symbols is O = too few
levels, 0 = too many levels, A = correct number of levels = 2. A
dot in the symbol indicates that this solution has minimum scatter
o5 (Eq. 13b). A dot in A gives the correctly predicted level.

In the following figures, the k (Fig. 1) as a mea-
sure of the gating frequency is given on the abscissa,
A1 (in %) on the ordinate and the number of levels is
presented as parameter by the following symbols: O
= too few levels, [] = too many levels, A = correct
number of levels. A dot in the symbol indicates that
this solution has minimum scatter o, (Eq. 13b). A
dot in A indicates that the correct number of levels
has been predicted.

Figure 7 shows the results of simulations ob-
tained from 1 channel of the symmetric 2-state model
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(Fig. 1, kco = koc = k). The correct number of
levels is found down to an SNR of 0.25, and the
relative error A rel (in %) stays beyond 10% even at
high rate constants. At the highest frequencies, the
increasing error A, is not a failure of the level de-
tector, but an effect of the anti-aliasing filter shifting
the apparent level (Hansen et al., 1997). The strange
effect is the obvious failure in Fig. 74 at 100 and 1000
sec”!. Actually, a patcher would not worry, because
such a good SNR would never occur. However, these
data points are shown in order to demonstrate the
effect of bit noise at extreme SNRs that causes ad-
ditional level jumps with steps quite higher than the
Gy, Of the noise. The nearly parallel behavior of A,
in Fig. 74 and B shows that not the noise, but the
anti-aliasing filter is the origin of A,;. At SNR = 0.25
the detector fails beyond 2000 sec™

The 2-state model with 3 channels (Fig. 8) yields
shorter dwell times compared to the 1-channel record
with the same rate constants. Nevertheless, the per-
formance of the level detector is still good at SNR =
400 and SNR = 4. Again, the effect of the anti-ali-
asing filter on the apparent level leads to a parallel
behavior in Fig. 84 and B. However, at SNR = 0.25,
the level detector fails. In most cases, the highest level
is not found because the detection of its rare occur-
rence is distorted by noise (dot in the circle, indicating
that a lower number of levels was favored by the 64-
criterion, Eq. 13b).

The asymmetrical 2-state model with 1 channel is
presented in Fig. 9. The rate constant kco was con-
stant at 16 sec™!. koc = k is shown at the abscissa.
The performance is still good at SNR = 0.25 because
of the long dwell times related to kco. Again, the high
error at high frequencies is not a failure of the level
detector, but is caused by the smoothing effect of the
anti-aliasing effect as in Figs. 7 and 8.

Another special problem of fast gating is illus-
trated by means of the 5-state model in Fig. 1. This
model with £ = 20 was used by Farohki et al. (2000)
to describe fast gating in Chara. Figure 10 shows that
the correct number of levels was found for bad SNRs
(SNR = 0.25 and SNR = 1), even though the error
A.e; was between 20 to 30%. Surprisingly, three levels
instead of 2 were found at good SNRs. Again, this
apparent failure at high gating frequencies even at
good SNRs in Fig. 10 does not result from a failure of
the level detector. An additional state results from the
smoothing effect of the anti-aliasing filter. It averages
over bursts of fast gating, and the reduced average
current value is delivered as an apparent state to the
output of the filter. In the case of low noise, the rare
occurrence of bursts with low gating frequencies
(from the tail of the dwell-time distributions) is not
corrupted by noise. This gives the output of the filter
a chance to reach the full level, which sometimes
leads to the coexistence of the full and the reduced
level, thus increasing the number of apparent levels.
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Fig. 8. Performance of the level detector for data simulated on the
basis of 3 channels of the 2-state model in Fig. 1. (4) SNR = 400;
(B) SNR = 4; (C) SNR = 0.25. k is given at the bottom abscissa.
Arel (in %) is calculated by Eq. 14. The meaning of the symbols is O
= too few levels, (1 = too many levels, A = correct number of
levels = 4. A dot in the symbol indicates that this solution has
minimum scatter og (Eq. 13b).

This apparent reduced state resulting from the
averaging function of the anti-aliasing filter has been
the reason that the AMFE (anomalous mole fraction
effect) was considered to result from lower single-
channel conductivity and led to the suggestion of the
models of Hille and Schwarz (1978) or Wu (1992).
However, Farokhi et al. (2000) could show that the
stream of ions through the channel is interrupted with
a gating frequency of about 100 kHz, leading to a
reduced apparent single-channel conductivity at the
output of the anti-aliasing filter. This state cannot be
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Fig. 9. Asymmetrical 2-state model with kco = 16 sec™!, and koc

= k given at the abscissa. (4) SNR = 400; (B) SNR = 4; (C) SNR
= 0.25.

distinguished from real states by level detectors. In
the case of good SNR, this fast gating may become
obvious in an asymmetry of the amplitude histo-
grams, as described by beta-distributions (FitzHugh,
1983; Yellen, 1984; Riessner, 1998).

COMPARISON OF DIFFERENT METHODS
oF LEVEL DETECTION

Three different methods were employed for the
comparison: the level detector described here, the
gauss fit, and the fit-by-eye. The gauss fit approxi-
mates the amplitude histogram A(I) of the time series
by a sum of Gaussians

mg )2

Zbexp (15)
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Fig. 10. Application of the level detector to the 5-state model in
Fig. 1. The failure at good SNR as indicated by the dot in [J in (4)
results from fast gating.

with S being the mean value of the current of Mar-
kov level i, o; the mean value of the noise at that
level, and mg the maximum number of levels.

The fit by eye adjusts the lines on the screen of a
computer by means of the cursor keys until the op-
erator gets the impression that they are in the middle
of the noisy bands (Fig. 3B) related to the selected
level.

Table 1 shows the levels and A, obtained for 3
channels of the 2-state model as used also for Fig. 7.
The real S; are at 1000, 1100, 1200, and 1300. Results
from the asymmetrical 2-state model are given in
Table 2.

Both tables show that at low frequencies the
performance of the level detector is slightly better
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than the fit-by-eye. At very high frequencies, the fit-
by-eye gets better results. The gauss fit seems to do
quite well. However, the numbers in Table 1 and
Table 2 give a wrong picture with respect to the
gaussian fit. Figure 11 shows the amplitude histogram
in the case of the 7.5-kHz data in Table 1. It is ob-
vious that the smooth dome in Fig. 11 does not have
enough characteristic features to determine 5 to 8
parameters (Eq. 15) by a fitting routine. The gauss fit
failed completely when it had to start from arbitrary
values. Here it was used for a different purpose. It
was given the data from the level detector or from the
fit-by-eye, and then it was checked whether these
values could still be improved by fitting the amplitude
histogram. The tables show that there was no im-
provement by the gaussian fit.

The problem of overlapping c-environments is
illustrated by the application to real data. A major
challenge is the application to a K channel in maize
channel. Its analysis is difficult because of small sin-
gle-channel currents, fast flickering and high noise
levels (Fig. 124) probably due to bad sealing prop-
erties, resulting from the difficulty to cope with the
suberin layers of these cells (Keunecke et al, 1997,
Keunecke & Hansen, 2000). Averaging of the signal
obtained at a sampling rate of 200 kHz and a filter of
50 kHz would smooth out the jumps between levels,
and the amplitude histograms do not display peaks
(Fig. 12B).

A time series of 2 million data points was split
into 3, 4, 5, and 6 parts. For every set of parts, pla-
teaus (Fig. 5) were found for 2, 3, 4 (5) levels. All
solutions gave the same ground level (1716 or 1717
digits of the DA-converter that was assigned to 0
pA). The results for 6 parts were [number of levels
(mg); average og; (pA), o (pA)]: [2: 0.904, 0.0349]; [3:
1.014, 0.040]; [4: 1.021, 0.014].

According to the o criterion of Fig. 6, the so-
lution with 4 levels should be selected. However,
other criteria led to a strong preference of the solu-
tion with 3 levels over that with 4 levels: (1) The
number of putative jump-free sections assigned to the
final levels is extremely low for the 4-level solution
(7387 sections) compared to the 3-level solution
(36552 sections). (2) The 3-level solution was repro-
duced in all sets with 3, 4, 5, or 6 parts of the time
series with levels at 0, 1.65 and 3.3 pA (2 channels of
1.65 pA). The 4-level solution gave different current
values for different partitions of the time series. When
the whole time series was split into 4 parts, the 4-level
solution was replaced by a 5-level solution. The levels
of the 4-level solution (with 4 parts of the time series)
were at 0, 0.86, 1.7, and 2.9 pA. Thus, they have to be
assigned to an unlikely scenario, namely to one
channel with 2 sublevels. This results from the fact
that the highest level cannot be obtained as a multiple
of the lower levels, as would be expected in records
containing groups of identical channels. However,
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Table 1. Levels and A (in %) obtained from the evaluation of the symmetrical 2-state model in Fig. 1 with 3 channels by means of three

different methods. The real S; are at 1000, 1100, 1200, and 1300.

kco SNR Detected levels and errors of the fit
Fit-by-person Gauss-fit Level detector

2.5 msec™! 4 1006, 1103, 1200, 1297 1006, 1103, 1200, 1297 1001, 1101, 1199, 1298
Arcl =3 A1‘«:1 =3 Arr:l =125

7.5 msec™! 4 990, 1094, 1198, 1302 1013, 1105, 1197, 1289 1009, 1105, 1193, 1290
Arel =5 Arel =38 Arel = .75

25 msec™! 4 1060, 1151, 1242 974, 1062, 1150, 1238 1049, 1130, 1187, 1262
T Arcl =44 Arcl = 325

30 msec™! 4 1047, 1123, 1199, 1275 1036, 1113, 1190, 1267 1072, 1153, 1221
Ao = 24 A = 23 —

Table 2. Levels and A, (in %) obtained from the evaluation of the asymmetrical 2-state model in Fig. 1 with 1 channel by means of three

different methods. The real S; are at 1000 and 1100.

Detected levels and errors of the fit

Fit-by-person Gauss-fit Level detector

1

16 sec™ 2 msec™! 0.25

2 sec”! 500 sec”! 0.25

1

16 sec™ 10 msec™! 9

1016, 1116
Are] =16
1015, 1131
Arel =23 Arel = 56
1002, 1104 1001, 1094
Are] =3 Arel =35

898, 1104
Arel =53
891, 1103

993, 1097
Arel =5

996, 1089
Arel =75
990, 1006
Arel =352

/< |

1000 ¢

events
—
(]

l M l

1000 1300 I

Fig. 11. Amplitude histogram of the time series generated by three
channels of the symmetrical Markov model used in Fig. 8 and
Table 1 with SNR = 4. The smooth lines are the Gaussian dis-
tributions of the noise, and the vertical lines give the levels (Eq. 15).

even if such a combination were found, the model test
suggested by Caliebe, Rosler & Hansen (2002) should
be applied.

The 3-level solution selected by the above four
criteria turned out to be identical to that found by
Keunecke et al. (1997). The failure of the criterion of
Fig. 6 in the case of records with overlapping ¢ en-
vironments results from the following fact. Unde-
tected jumps may lead to false levels between the true
levels. Such a false level narrows the distance be-
tween levels, and thus it can happen that the false
level falls into the range that is tolerated by the
Student’s #-test of Eq. 12. Consequently, most of the

sections that have a true mean value will be dis-
carded by the Student’s #-test level because they can
be assigned to two levels. This leads to two effects:
Strong decrease of the number of levels that survive,
and a shift of the true levels away from the false
level, because those sections that are further away
from the false level have a higher chance to survive.
Both effects are found in the 4-level solution as all
levels besides the ground level were different from
those of the 3-level solution and from those of the 4-
or 5-level solution with other partitions of the time
series. Thus, the above considerations turned out to
be an adequate replacement for the criterion in Fig.
6. The amplitude histogram (Fig. 12B) is no help. All
solutions could be fitted to the envelope of the am-
plitude histogram.

Conclusions

The failure of the gaussian fits implies that there is
only a competition between the fit-by-eye and the
automatic level detector. It may be disappointing
that at high frequencies the level detector did not
give better results than the fit by eye. However, the
following features have to be taken into account:
Probably the protein computer used for the fit-by-eye
makes use of a similar algorithm as the silicon
computer used for the level detector. Also, the per-
son who adjusts the horizontal lines in Fig. 11 or Fig.
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Fig. 12. Application of the level detector to real data from a K™
channel in maize. (4). The levels of the most likely solution indi-
cated by the horizontal line. (B). Amplitude histogram of the time
series with the levels taken from (4) and the common scatter ¢ as
obtained from fitting the histogram. This ¢ (1.01 pA) was about
equal to that given by the level detector

12 uses the width of the cloud as a measure of oy,
and employs an algorithm similar to the grouping
process for the assignment of the jump-free sections.
As mammalian protein computers have a superb
image-processing software, a some what better per-
formance in time series with fast gating may not be
surprising.

On the other hand, the fit-per-eye requires a very
experienced person (one out of five in our group),
whereas in most cases, the level detector reaches a
similar quality without human interference. This may
be a great benefit if large amounts of data have to be

analyzed, and/or experienced persons are not around.

The work was supported by the Deutsche Forschungsgemeinschaft.
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